Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain.
نویسندگان
چکیده
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).
منابع مشابه
Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response.
Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking, and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically, and its levels are elevated in certain pathological settings, such as cancer and infections. In this study, we demonstrate that BCR signal transduction by mature murine B ...
متن کاملLysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid.
Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain and several pathological events in a partial sciatic nerve injury model. Recently, we reported that lysophosphatidic acid (LPA) induces neuropathic pain as well as demyelination and pain-related protein expression changes via LPA(1) receptor signaling. Lysophosphatidylcholine (LPC), also known as lysolecithin, which is...
متن کاملInvolvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain.
We demonstrated previously that the lysophosphatidic acid-1 (LPA1) receptor plays a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. The present study revealed that mild cerebral ischemia by left transient middle cerebral artery occlusion (tMCAO) for 15min causes the hypersensi...
متن کاملLysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression.
CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly...
متن کاملTitle Autotaxin , a synthetic enzyme of lysophosphatidic acid ( LPA ) , mediatesthe induction of nerve - injured neuropathic pain
Recently, we reported that lysophosphatidic acid (LPA) induces long-lasting mechanical allodynia and thermal hyperalgesia as well as demyelination and upregulation of pain-related proteins through one of its cognate receptors, LPA1. In addition, mice lacking the LPA1 receptor gene (lpa1 mice) lost these nerve injury-induced neuropathic pain behaviors and phenomena. However, since lpa1 mice did ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 287 21 شماره
صفحات -
تاریخ انتشار 2012